Math 10B - Calculus of Several Variables II
 Quiz 1
 April 8, 2011

Name: \qquad
Evaluate the following integral:

$$
\int_{0}^{2} \int_{\frac{y}{2}}^{1} e^{-x^{2}} d x d y
$$

Solution. First, since we cannot do the integral $\int e^{-x^{2}} d x$, we need to change the order of integration. So let's look at the region of integration:

Now we can easily change the order of integration:

$$
\begin{aligned}
\int_{0}^{2} \int_{\frac{y}{2}}^{1} e^{-x^{2}} d x d y & =\int_{0}^{1} \int_{0}^{2 x} e^{-x^{2}} d y d x \\
& =\int_{0}^{1} 2 x e^{-x^{2}} d x \stackrel{u=x^{2}}{=} \int_{0}^{1} e^{-u} d u \\
& =-\left.e^{-u}\right|_{0} ^{1}=-e^{-1}+e^{0} \\
& =1-\frac{1}{e}=\frac{e-1}{e} .
\end{aligned}
$$

